Name:

__ Date: ____

Geometric Sequences and Series

Determine whether each sequence could be geometric. If so, find the formula.

4. 3125, 2500, 2000, 1600, 1280...

Find the rule and the 10th term of each geometric sequence.

Write the rule of the geometric sequence with the given terms.

7.
$$a_3 = 12$$
, $a_6 = 96$

8.
$$a_{15} = 100$$
, $a_{17} = 25$

9.
$$a_4 = 12$$
, $a_6 = \frac{1}{3}$

10.
$$a_2 = 18$$
, $a_5 = 3888$

Find the first 5 terms of the sequence

11.
$$a_n = -4(-2)^{n-1}$$

12.
$$a_n = 20(0.6)^{n+2}$$

Find the indicated sum for each geometric series <u>using the formula</u>

14.
$$\sum_{k=1}^{8} (-4)^{k-1}$$

Find the series using your <u>calculator</u>

15.
$$2 + 8 + 32 + 128...$$
 $n = 9$

16. S₅ for 4, 8, 16, 32...

17.
$$\sum_{n=3}^{9} (-4)^{n-1}$$

18. $\sum_{m=5}^{10} -81 \left(\frac{-1}{3} \right)^{m-2}$

^{19.} Deanna received an e-mail asking her to forward it to 10 other people. Assume that no one breaks the chain and that there are no duplicate recipients. How many e-mails will have been sent after 8 generations, including Deanna's.