\qquad Date: \qquad

Geometric Sequences and Series

Determine whether each sequence could be geometric. If so, find the formula.

1. 1.1, 3.3, 9.9, 29.7, 89.1, ...
2. $1,2,6,24,120,720, \ldots$
3. $-1,4,-16,64, \ldots$
4. $3125,2500,2000,1600,1280 \ldots$

Find the rule and the $10^{\text {th }}$ term of each geometric sequence.
5. $1600,800,400,200, \ldots$
6. $2,-6,18,-54, \ldots$

Write the rule of the geometric sequence with the given terms.
7. $a_{3}=12, a_{6}=96$
8. $a_{15}=100, a_{17}=25$
9. $a_{4}=12, a_{6}=\frac{1}{3}$
10. $a_{2}=18, a_{5}=3888$

Find the first 5 terms of the sequence

11. $a_{n}=-4(-2)^{n-1}$

Find the indicated sum for each geometric series using the formula
13. S_{7} for $14,42,126,378 \ldots$
14. $\sum_{k=1}^{8}(-4)^{k-1}$

Find the series using your calculator
15. $2+8+32+128 \ldots n=9$
16. S_{5} for $4,8,16,32 \ldots$
17. $\sum_{n=3}^{9}(-4)^{n-1}$
18. $\sum_{m=5}^{10}-81\left(\frac{-1}{3}\right)^{m-2}$
19. Deanna received an e-mail asking her to forward it to 10 other people. Assume that no one breaks the chain and that there are no duplicate recipients. How many e-mails will have been sent after 8 generations, including Deanna's.

