\qquad
Graph the following piecewise functions \& determine the characteristics:

1. $h(x)= \begin{cases}-2 x-6, & x<-3 \\ x-2, & x \geq-3\end{cases}$

Increasing:

Decreasing:

Point of
Discontinuity:

2. $h(x)=\left\{\begin{array}{cc}(x+1)^{2}-2, & x<1 \\ x+1, & x \geq 1\end{array}\right.$

Domain:

3. $f(x)=\left\{\begin{array}{rr}-x^{2}+2, & x<1 \\ 2 x+1, & x \geq 1\end{array}\right.$

Domain:

Range:

Point of
Discontinuity:

Constant:
4. $f(x)=\left\{\begin{array}{cc}3, & x<0 \\ x^{2}-3, & x \geq 0\end{array}\right.$
5. $f(x)= \begin{cases}\frac{1}{2} x & x<4 \\ -x+3 & x \geq 4\end{cases}$

Increasing:

Decreasing:

Point of
Discontinuity:

Increasing:
6. $f(x)= \begin{cases}-x+3 & x \leq-1 \\ 2 x & -1<x \leq 3 \\ 5 & x>3\end{cases}$

Increasing:

Decreasing:

Constant:

Point of
Discontinuity:

Evaluate using the indicated function.

$$
f(x)=\left\{\begin{array}{ll}
x^{2}, & x>-1 \\
x-2, & x \leq-1
\end{array} \quad g(x)=\left\{\begin{array}{ll}
2 x, & x \leq-3 \\
3 x-1, & x>-3
\end{array} \quad h(x)= \begin{cases}|x|-2, & x \geq 0 \\
|x-2|, & x<0\end{cases}\right.\right.
$$

7. $f(4)$
8. $g(-3)$
9. $h(3)$
10. Graph: $f(x)= \begin{cases}4 & x \leq-1 \\ 2 & -1<x \leq 1 \\ 0 & 1<x \leq 3 \\ -2 & x>3\end{cases}$

Range:

Constant:

11. Graph: $f(x)=\left\{\begin{array}{cc}-2 & x \leq-2 \\ 1 & -2<x \leq 2 \\ 4 & x>2\end{array}\right.$

Range:

12. Your parents are giving you money based on the number of points you score in the basketball game.

- Up to 7 points: No money
- More than 7 points up to 15 points: $\$ 10$
- More than 15 points: $\$ 20$

Write a piecewise function to show the money based on points.
13. When a diabetic takes long-acting insulin, the insulin reaches its peak effect on the blood sugar level in about three hours. This effect remains fairly constant for 5 hours, then declines, and is very low until the next injection. In a typical patient, the level of insulin might be modeled by the following function on the right.
$f(t)= \begin{cases}40 t+100 & 0 \leq t \leq 3 \\ 220 & 3<t \leq 8 \\ -80 t+860 & 8<t \leq 10 \\ 60 & 10<t \leq 24\end{cases}$

Here, $f(t)$ represents the blood sugar level at time thours after the time of the injection. If a patient takes insulin at 6 am, find the blood sugar level at each of the following times.
a. 7 am
b. 11 am
c. 3 pm
d. 5 pm

Given the graph, determine the piecewise function (include the domain restriction):

