Solving Exponential and Logarithmic Equations

NOTES Page 501-504

EXAMPLE 1 Solving by Equating Exponents

Solve $4^{3 x}=8^{x+1}$.

Solution

$$
\begin{aligned}
4^{3 x} & =8^{x+1} & & \text { Write original equation. } \\
\left(2^{2}\right)^{3 x} & =\left(2^{3}\right)^{x+1} & & \text { Rewrite each power with base } 2 . \\
2^{6 x} & =2^{3 x+3} & & \text { Power of a power property } \\
6 x & =3 x+3 & & \text { Equate exponents. } \\
x & =1 & & \text { Solve for } x .
\end{aligned}
$$

EXA MPLE 2 Taking a Logarithm of Each Side

Solve $2^{x}=7$.

Solution

$$
\begin{aligned}
2^{x} & =7 & & \text { Write original equation. } \\
\log _{2} 2^{x} & =\log _{2} 7 & & \text { Take } \log _{2} \text { of each side. } \\
x & =\log _{2} 7 & & \log _{b} b^{x}=x \\
x & =\frac{\log 7}{\log 2} \approx 2.807 & & \text { Use change-of-base formula and a calculator. }
\end{aligned}
$$

The solution is about 2.807 . Check this in the original equation.

EXAMPLE 3 Taking a Logarithm of Each Side

Solve $10^{2 x-3}+4=21$.

Solution

$$
\begin{aligned}
10^{2 x-3}+4 & =21 & & \text { Write original equation. } \\
10^{2 x-3} & =17 & & \text { Subtract } 4 \text { from each side. } \\
\log 10^{2 x-3} & =\log 17 & & \text { Take common log of each side. } \\
2 x-3 & =\log 17 & & \log 10^{x}=x \\
2 x & =3+\log 17 & & \text { Add } 3 \text { to each side. } \\
x & =\frac{1}{2}(3+\log 17) & & \text { Multiply each side by } \frac{1}{2} . \\
x & =2.115 & & \text { Use a calculator. }
\end{aligned}
$$

$\sqrt{ }$ CHECK Check the so

$$
\begin{aligned}
4^{3 \cdot 1} & \stackrel{?}{=} 8^{1+1} \\
64 & =64,
\end{aligned}
$$

1) This is a "rewrite with same base" problem. We did this on day 1!!
2) \& 3) To get rid of an Exponent... take the log of both sides! I will show how to do calculator in class.

EXAMPLE 5 Solving a Logarithmic Equation

Solve $\log _{3}(5 x-1)=\log _{3}(x+7)$.

SOLUTION

$$
\begin{aligned}
\log _{3}(5 x-1) & =\log _{3}(x+7) & & \text { Write original equation. } \\
5 x-1 & =x+7 & & \text { Use property stated above. } \\
5 x & =x+8 & & \text { Add } 1 \text { to each side. } \\
x & =2 & & \text { Solve for } x .
\end{aligned}
$$

The solution is 2 .
CHECK Check the solution by substituting it into the original

$$
\begin{aligned}
\log _{3}(5 x-1) & =\log _{3}(x+7) & & \text { Write original equation. } \\
\log _{3}(5 \cdot 2-1) & \stackrel{?}{=} \log _{3}(2+7) & & \text { Substitute } 2 \text { for } x . \\
\log _{3} 9 & =\log _{3} 9 \checkmark & & \text { Solution checks. }
\end{aligned}
$$

EXAMPLE 6 Exponentiating Each Side

Solve $\log _{5}(3 x+1)=2$.

SOLUTION

$$
\begin{aligned}
\log _{5}(3 x+1) & =2 & & \text { Write original equation. } \\
5^{\log _{5}(3 x+1)} & =5^{2} & & \text { Exponentiate each side using base } 5 . \\
3 x+1 & =25 & & b^{\log _{b} x}=x \\
x & =8 & & \text { Solve for } x .
\end{aligned}
$$

EXAMPLE 7 Checking for Extraneous Solutions

Solve $\log 5 x+\log (x-1)=2$. Check for extraneous solutions.

Solution

$$
\begin{aligned}
\log 5 x+\log (x-1) & =2 \\
\log [5 x(x-1)] & =2 \\
10^{\log \left(5 x^{2}-5 x\right)} & =10^{2} \\
5 x^{2}-5 x & =100 \\
x^{2}-x-20 & =0 \\
(x-5)(x+4) & =0 \\
x=5 \quad \text { or } x & =-4
\end{aligned}
$$

Write original equation.
Product property of logarithms
Exponentiate each side using base 10 .
$10^{\log x}=x$
Write in standard form.
Factor.
Zero product property

CHECK Check the solution by substituting it into th

$$
\begin{array}{rlrl}
\log _{5}(3 x+1) & =2 & & \text { Write original equation. } \\
\log _{5}(3 \cdot 8+1) & \geq 2 & \text { Substitute } 8 \text { for } x . \\
\log _{5} 25 & 22 & \text { Simplify. } \\
2 & =2 \checkmark & \text { Solution checks. }
\end{array}
$$

> 6) To get rid of a log... raise both sides with the base as an exponent!
7) This is the toughest one. You have to CONDENSE first and then raise both sides to the exponent.

The solutions appear to be 5 and -4 . However, when you check these in the original equation or use a graphic check as shown at the right, you can see that $x=5$ is the only solution.

The solution is 5 .

