Solving Exponential and **Logarithmic Equations**

NOTES Page 501-504

EXAMPLE 1) Solving by Equating Exponents Solve $4^{3x} = 8^{x+1}$ SOLUTION

$4^{5x} = 8^{x+1}$	Write original equation.
$(2^2)^{3x} = (2^3)^{x+1}$	Rewrite each power with base 2.
$2^{6x} = 2^{3x+3}$	Power of a power property
6x = 3x + 3	Equate exponents.
x = 1	Solve for x.

CHECK Check the so 43.1 2 81+1 64 = 64 🗸

1) This is a "rewrite with same base" problem. We did this on day 1!!

EXAMPLE 2) Taking a Logarithm of Each Side

Solve $2^x = 7$.

SOLUTION

 $2^{x} = 7$ $\log_2 2^x = \log_2 7$ $x = \log_2 7$ $x = \frac{\log 7}{\log 2} \approx 2.807$

Write original equation. Take log₂ of each side. $\log_b b^x = x$ Use change-of-base formula and a calculator.

side.

The solution is about 2.807. Check this in the original equation.

EXAMPLE 3) Taking a Logarithm of Each Side

Solve $10^{2x-3} + 4 = 21$.

SOLUTION

$0^{2x-3} + 4 = 21$	Write original equation.
$10^{2x-3} = 17$	Subtract 4 from each side
$\log 10^{2x-3} = \log 17$	Take common log of each
$2x - 3 = \log 17$	$\log 10^x = x$
$2x = 3 + \log 17$	Add 3 to each side.
$x = \frac{1}{2}(3 + \log 17)$	Multiply each side by $\frac{1}{2}$.
<i>x</i> ≈ 2.115	Use a calculator

2) & 3) To get rid of an Exponent... take the log of both sides! I will show how to do calculator in class.

Solution checks.

5) This is a "log on both sides" problem. We did this on day 1 too!!

EXAMPLE 6	Ex	ponentiating	Each	Side
-----------	----	--------------	------	------

 $\log_3 9 = \log_3 9 \checkmark$

Solve $\log_5(3x + 1) = 2$.

SOLUTION

$\log_5\left(3x+1\right)=2$	Write original equation.
$5^{\log_5(3x+1)} = 5^2$	Exponentiate each side using base 5.
3x + 1 = 25	$b^{\log_b x} = x$
x = 8	Solve for x.

CHECK Check the solution by substituting it into th $\log_5(3x + 1) = 2$ Write original equation. $\log_5(3 \cdot 8 + 1) \stackrel{?}{=} 2$ Substitute 8 for x.

 $\log_5 25 \stackrel{?}{=} 2 \qquad \text{Sin}$ $2 = 2 \checkmark \qquad \text{So}$

Simplify. Solution checks.

6) To get rid of a log... raise both sides with the base as an exponent!

EXAMPLE 7

Checking for Extraneous Solutions

Solve $\log 5x + \log (x - 1) = 2$. Check for extraneous solutions.

SOLUTION

$\log 5x + \log \left(x - 1\right) = 2$	Write original equation.
$\log\left[5x(x-1)\right] = 2$	Product property of logarithms
$10^{\log(5x^2 - 5x)} = 10^2$	Exponentiate each side using base 10.
$5x^2 - 5x = 100$	$10^{\log x} = x$
$x^2 - x - 20 = 0$	Write in standard form.
(x-5)(x+4)=0	Factor.
x = 5 or $x = -4$	Zero product property

7) This is the toughest one. You have to CONDENSE first and then raise both sides to the exponent.

The solutions appear to be 5 and -4. However, when you check these in the original equation or use a graphic check as shown at the right, you can see that x = 5 is the only solution.

The solution is 5.