Name _____

Date _____

Directions: Solve each rational inequality. Cross out the answer in the table below. The remaining letters will spell out the answer to this riddle.

If two's company and three's a crowd, what are four and five?

N (-∞,-3)	O (-6,-1)	$ \underset{(-\infty,-1]\cup(3,\infty)}{M} $	l (0,3)	$\begin{bmatrix} E \\ \left(-2, \frac{3}{2}\right] \end{bmatrix}$	L $(-\infty, -5)$	P (-2,0]
H (-5,-4)	$ \begin{pmatrix} N \\ (-\infty, -3) \cup [2, \infty) \end{pmatrix} $	A [2,∞)	E (-∞,-3)	$ \begin{smallmatrix} T \\ (-\infty, -2) \cup (4, \infty) \end{smallmatrix} $	\$ (-2,3]	$\begin{array}{c} Y\\ [-3,-1)\cup[3,\infty)\end{array}$

$1. \frac{x-4}{x+2} > 0$	$2. \frac{x+12}{x+2} \ge 3$
3. $\frac{2}{x+4} < -2$	$4. \frac{2}{x+5} \le 0$

$5. \frac{5x}{x+2} \le 0$	$6. \frac{4}{x-3} \ge -1$
$7. \frac{7}{x+2} \ge 2$	8. $\frac{x^2 - x - 2}{x + 1} \ge 0$
9. $\frac{x^2 - 9}{x + 1} \ge 0$	$10. \frac{5}{x+6} > 1$